WEEKLY TEST TARGET - JEE- 02 TEST - 02 SOLUTION Date 14-07-2019

[PHYSICS]

1.
2.

$$
\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} ; \quad \therefore \text { unit of } \varepsilon_{0}=\frac{\left(\text { coulomb }{ }^{2}\right)}{\left(\text { newton }-\mathrm{m}^{2}\right.}
$$

3.

Here, $\frac{2 \pi}{\lambda}(c t-x)$ is dimensionless. Hence, $\frac{c t}{\lambda}$ is also dimensionless and unit of ct is same as that of x.
Therefore, unit of λ is same as that of x. Also unit of y is same as that of A, which is also the unit of x.
4. know that the units of physical quantities which can be expressed in erms of fundamental unis are called derived units. Mass, length and time are fundamental units but volume is a derived unit (as $V=L^{3}$)
6.
$C R=\frac{q}{V} \times \frac{V}{l}=\frac{q}{q / t}=t$
$[\mathrm{CR}]=[\mathrm{T}]\left[\mathrm{M}^{0} \mathrm{~L}^{\mathrm{O}} \mathrm{T}\right]$
$[\mathrm{a}]=\left[\mathrm{PV}^{2}\right]$
$=\left[\frac{\mathrm{FV}^{2}}{\mathrm{~A}}\right]=\frac{\left[\mathrm{ML}^{-2} \mathrm{~T}^{6}\right]}{\left[\mathrm{L}^{2}\right]}=\left[\mathrm{MLT}^{5-2}\right]$
8. $\mathrm{E}=\mathrm{hv}$ or $[\mathrm{h}]=\left[\frac{\mathrm{E}}{\mathrm{v}}\right]=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
9. We know that dimension of velocity of light $[c]=\left[M^{0} \mathrm{LT}^{-1}\right]$; dimension of gravitational constant $[\mathrm{G}]=\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-}\right.$ $\left.{ }^{2}\right]$ and dimension of Planck's constant $[h]=\left[M^{1} L^{2} T^{-2}\right]$. Solving the above three equations, we get; $[M]=\left[c^{1 /}\right.$ $\left.{ }^{2} G^{-1 / 2} h^{1 / 2}\right]$.
12. $\frac{\Delta \mathrm{V}}{\mathrm{V}}=3 \times \frac{\Delta \mathrm{r}}{\mathrm{r}}=3 \times \frac{1}{100}=\frac{3}{100}=3 \%$
13. Given length $(\ell)=3.124 \mathrm{~m}$ and breadth $(\mathrm{b})=3.002 \mathrm{~m}$. We know that area of the sheet $(\mathrm{A})=\ell \times \mathrm{b}=3.124 \times$ $3.002=9.378248 \mathrm{~m}^{2}$. Since, both length and breadth have four significant figures, therefore area of the sheet after rounding off to four significant is $9.378 \mathrm{~m}^{2}$.
14. $\frac{[\mathrm{h}]}{[\mathrm{l}]}=\frac{[\mathrm{E} \lambda]}{[\mathrm{Cl}]}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right][\mathrm{L}]}{\left[\mathrm{LT}^{-1}\right]\left[\mathrm{ML}^{2}\right]}$
$=\left[\mathrm{T}^{-1}\right]=[$ frequency $]$.
15. Unit of energy $=[F]^{x}[A]^{y}[T]^{2}$
$[\mathrm{M}]^{1}[\mathrm{~L}]^{2}[\mathrm{~T}]^{-2}=\left[\mathrm{MLT}^{-2}\right]^{\mathrm{x}}\left[\mathrm{M}^{0} \mathrm{LT}^{-2}\right]^{\mathrm{y}}\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]^{\mathrm{z}}$
or $\quad[M]^{1}[L]^{2}[T]^{-2}=M^{x} L^{x+y} T^{-2 x-2 y+z}$
For equality,
$x=1, x+y=2$ or $y=1$
$-2 x-2 y+z=-2$ or $z=2$
$\therefore \quad$ Unit of energy $=[F]^{1}[A]^{1}[T]^{2}$
16. $x^{2}=1+t^{2}$
or $\quad x=\left(1+t^{2}\right)^{1 / 2}$
$\frac{d x}{d t}=\frac{1}{2}\left(1+t^{2}\right)^{-1 / 2} \cdot 2 t=t\left(1+t^{2}\right)^{-1 / 2}$
$\frac{d^{2} x}{d t^{2}}=t\left(-\frac{1}{2}\right)\left(1+t^{2}\right)^{-3 / 2} \cdot 2 t\left(1+t^{2}\right)^{-1 / 2}$
$=\frac{1}{x}-\frac{t^{2}}{x^{3}}$
17. $\mathrm{x}=\frac{\mathrm{k}}{\mathrm{b}^{2}}\left(1-\mathrm{e}^{-\mathrm{bt}}\right)$
$\frac{d x}{d t}=\frac{k}{b} e^{-b t}, \quad \frac{d^{2} x}{d t^{2}}=-k e^{-b t}$
18.
$S_{n}=\frac{a}{2}(2 n-1) \quad$ and $s(n)=\frac{a}{2} n^{2}$
Hence, $\frac{s_{n}}{s(n)}=\frac{\frac{a}{2}(2 n-1)}{\frac{a}{2} n^{2}}=\left[\frac{2}{n}-\frac{1}{n^{2}}\right]$
19. For no collision, the speed of car A may be reduced to v_{B} before the cars meet, i.e., final relative velocity of car A with respect to car B is zero, i.e., $V_{r}=0$
Henc, $u_{r}=$ initial relatie velocity $=V_{A}-V_{B}$
Relative acceleration $=a_{r}=u^{2}+2 a s$
Then using the equation, $v^{2}=u^{2}+2 a s$
$0=\left(V_{A}-V_{B}\right)^{2}-2 a s^{\prime} \quad$ or $s^{\prime}=\frac{\left(V_{A}-V_{B}\right)^{2}}{2 a}$
For no collision, $s^{\prime} \leq s$, i.e., $\frac{\left(V_{A}-V_{B}\right)^{2}}{2 a} \leq s$
20.
21. In the portion OA, slope (= velocity) of the curve is +ve; at the point A, slope of the curve is zero; while in the portion $A B$, slope of the curve is $-v e$. Hence $(v-t)$ curve will be as shown in option (b)
22. The velocity-time graph can be drawn as shown in following figure.

Magnitude of slope of $O A=f$ and slope of $B C=\frac{f}{2}$
$v=\mathrm{ft}_{1}=\frac{\mathrm{f}}{2} \mathrm{t}_{2}$
$\therefore \quad \mathrm{t}=2 \mathrm{t}_{1}$
In the graph area of $\triangle \mathrm{OAD}$ gives distances,
$S=\frac{1}{2} \mathrm{ft}_{1}^{2}$
ARea of rectangle ABED gives distance travelled in time t
$\mathrm{S}_{2}\left(\mathrm{ft}_{1}\right) \mathrm{t}$

Distance travelled in time $t_{2}=S_{3}=\frac{1}{2} f_{2}\left(2 t_{1}\right)^{2}$
Thus, $S_{1}+S_{2}+S_{3}=15 \mathrm{~S}$
$\mathrm{S}+\left(\mathrm{ft}_{1}\right) \mathrm{t}+\mathrm{ft}_{1}^{2}=15 \mathrm{~S}$
$S+(f t) t+2 S=15 S$
$\left(\mathrm{ft}_{1}\right) \mathrm{t}=12 \mathrm{~S}$

$$
\left(S=\frac{1}{2} \mathrm{ft}_{1}^{2}\right)
$$

From eqns. (i) and (ii), we have
$\frac{12 \mathrm{~S}}{\mathrm{~S}}=\frac{\left(\mathrm{ft}_{1}\right) \mathrm{t}}{\frac{1}{2}\left(\mathrm{ft}_{1}\right) \mathrm{t}_{1}}$
or $\quad t_{1}=\frac{t}{6}$
From eqn. (i), we get;
$\therefore \quad S=\frac{1}{2} f\left(t_{1}\right)^{2}$
or $\quad S=\frac{1}{2} f\left(\frac{t}{6}\right)^{2}=\frac{1}{72} \mathrm{ft}^{2}$
23. Initial velocity of parachutist after bailing out, $u^{2}=2 \mathrm{ah}=2 \times 9.8 \times 50=980$ When it reaches the ground,
$3^{2}=u^{2}-2 \times 2 \times h_{1}$
or $\quad h_{1}=242.75 \mathrm{~m}$
$\therefore \quad$ Total height $=242.75+50 \simeq 293 \mathrm{~m}$
24.

Equation of given curve is
$\frac{v}{v_{0}}+\frac{x}{x_{0}}=1$
$\therefore \quad v=\left(1-\frac{x}{x_{0}}\right) v_{0}$
$\therefore \quad a=\frac{d v}{d t}-\frac{v_{0}^{2}}{x_{0}}\left(\frac{d x}{d t}\right)=-\frac{v_{0}}{x_{0}}(v)$
or $\quad a=-\frac{v_{0}^{2}}{x_{0}^{2}} x-\frac{v_{0}^{2}}{x_{0}}$
Which is straight line with positive slope and negative intercept.
25.
26. Here,
$x=a e^{-\alpha t}+b e^{\beta t}$
$\frac{d x}{d t}=-a \alpha e^{-\alpha t}+b \beta e^{t}$
$v=-a \alpha e^{-\alpha t}+b \beta e^{\beta t}$
For certain value of t velocity will increase.
$\mathrm{x}_{2}=\mathrm{vt}$
and $x_{1}=\frac{a t^{2}}{2}$
$x_{1}-x_{2}=-\left(v t-\frac{a t^{2}}{2}\right)$
So, the graph would be like that shown in figure.

27. Velocity at $3 s=$ total algebraic sum of area under the curve
or $\quad v=4 \times 2-4 \times 1$
$=8-4=4 \mathrm{~ms}^{-1}$.
28. Taking the motion from 0 to 2 is :
$\mathrm{u}=0, \mathrm{a}=3 \mathrm{~ms}^{-2}, \mathrm{t}=2 \mathrm{~s}, \mathrm{v}=$?
$v=u+a t=0+3 \times 2=6 \mathrm{~ms}^{-1}$
Taking the motion from 2 s to 4 s :
$\mathrm{v}=6+(-3)(2)=0 \mathrm{~ms}^{-1}$

Hence, graph (a) represents the correct option.
29.
30. Because the slope is the highest at $C, v=\frac{d s}{d t}$ is maximum.

[CHEMISTRY]

43.

$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3}$
1 L of N_{2} reacts with 3 L of H_{2} to form 2 L of NH_{3}.
10 L of N_{2} will react with $30 \mathrm{LH}_{2}$ to form $20 \mathrm{~L} \mathrm{NH}_{3}$.
Since actual yield is 50% of the expected yield,
therefore, NH_{3} formed $=10 \mathrm{~L}$
N_{2} reacted $=5 \mathrm{~L}$ and H_{2} reacted $=15 \mathrm{~L}$.
\therefore Mixture will contain $10 \mathrm{~L} \mathrm{NH}_{3}, 25 \mathrm{~L} \mathrm{~N}_{2}$ and $15 \mathrm{~L} \mathrm{H}_{2}$.
44.
$\underset{1 \mathrm{~mol}}{\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}} \equiv \underset{8 \mathrm{~mol}}{8 \mathrm{O}}$
$\therefore 0.25$ mole of $)$ atoms $=\frac{1}{8} \times 0.25 \mathrm{~mol}$ of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
=3.125 \times 10^{-2} \mathrm{~mol}
$$

45.

Number of electrons involved in the redox reaction is five.
Therefore, equivalent weight is M/5.
46.

Concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{25.3}{250} \times 1000=101.2 g \mathrm{~L}^{-1}$
$=\frac{101.2}{106} \mathrm{~mol} \mathrm{~L}^{-1}=0.9547 \mathrm{~mol} \mathrm{~L}^{-1}$
\therefore Conc. of Na^{+}ion $=2 \times 0.9547=1.91 \mathrm{M}$
Conc. of CO_{3}^{2-} ion $=\mathbf{0 . 9 5 5} \mathbf{~ M}$

AVIRAL CLASSES

creating scholars
$44 \mathrm{~g} \mathrm{CO}_{2}=1 \mathrm{~mol}=6.02 \times 10^{23}$ molecules
$48 \mathrm{~g} \mathrm{O}_{2}=\frac{48}{32}=1.5 \mathrm{~mol}=1.5 \times 6.02 \times 10^{23}$ molecules
$8 \mathrm{~g} \mathrm{H}_{2}=\frac{8}{2}=4 \mathrm{~mol}=4 \times 6.02 \times 10^{23}$ molecules
$64 \mathrm{~g} \mathrm{SO}_{2}=\frac{64}{32}=2 \mathrm{~mol}=2 \times 6.02 \times 10^{23}$ molecules
$\therefore 8 \mathrm{~g} \mathrm{H}_{2}$ has maximum number of molecules.
48.

Number of moles in 0.018 g water $=\frac{0.018}{18}=1 \times 10^{-3}$ moles
\therefore Number of molecules in 10^{-3} moles $=\mathrm{N}_{\mathrm{A}} \times 10^{-3}$.

$$
=6.022 \times 10^{23} \times 10^{-3}=6.022 \times \mathbf{1 0}^{\mathbf{2 0}}
$$

49.

Thus, 100 g of pure CaCO_{3} gives 1 mol or 6.023×10^{23} molecules
1 mg or $10^{-3} g$ of pure CaCO_{3} gives.
50.

$$
\begin{array}{cc}
\mathrm{M}_{1} \mathrm{~V}_{1}= & \mathrm{M}_{2} \mathrm{~V}_{2} \\
(\text { Original }) & \text { (Diluted) } \\
5 \times 1= & \mathrm{M}_{2} \times 10
\end{array}
$$

$\mathrm{M}_{2}=\frac{5}{10}=0.5 \mathrm{M}=\mathbf{1 N} \quad\left[\because \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ is a dibasic acid $]$
51.

$$
\begin{aligned}
\mathrm{N}_{1} \mathrm{~V}_{1} & =\mathrm{N}_{2} \mathrm{~V}_{2} \\
0.5 \times 100 & =0.1 \times \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =\frac{0.5 \times 100}{0.1}=500 \mathrm{~mL}
\end{aligned}
$$

Water to be added $=500-100=\mathbf{4 0 0} \mathbf{~ m L}$
53.
54.

Volume of oxygen left unused $=50-40=10 \mathrm{~mL}$
On cooling, water vapours change to liquid
volume of gases after cooling $=10 \mathrm{~mL} \mathrm{O}_{2}+20 \mathrm{mLCO}_{2}$

$$
=\mathbf{3 0} \mathrm{mL}
$$

55.

$448 c c$ of CO_{2} is given by metal carbonate $=2 g$
$22400 c c$ of CO_{2} is given by metal carbonate

$$
=\frac{2}{448} \times 22400 g=100 g
$$

\therefore Mol mass of $\mathrm{MCO}_{3}=100$
or $\mathrm{M}+60=100$ or atomic mass of metal $=100-60=40$
Eq. mass of metal $=\frac{40}{2}=\mathbf{2 0}$
56.
$\mathrm{M}_{\text {mix }} \mathrm{V}_{\text {mix }}=\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}$
$M_{\text {mix }}=\frac{M_{1} V_{1}+M_{2} V_{2}}{V_{\text {mix }}}$

$$
=\frac{0.5 \times 750+2 \times 250}{(750+250)}=\frac{375+500}{1000}=\mathbf{0 . 8 7 5} \mathbf{~ M}
$$

57.

Let the formula of the hydrocarbon be $\mathrm{C}_{x} \mathrm{H}_{y}$. its combustion can be represented as :

$$
\begin{gathered}
\underset{1 \mathrm{hol}}{\mathrm{C}_{x} \mathrm{H}_{y}}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \longrightarrow \underset{x \mathrm{~mol}}{x \mathrm{CO}_{2}}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O} \\
\left(x+\frac{y}{4}\right) \mathrm{mol}
\end{gathered}
$$

Moles of $\mathrm{H}_{2} \mathrm{O}$ produced $=\frac{0.72}{18}=0.04$
Moles of CO_{2} produced $=\frac{3.08}{44}=0.07$

$$
\begin{aligned}
\therefore x=0.07 & ; \frac{y}{2}=0.04 \quad \text { or } \quad y=0.08 \\
\frac{x}{y}= & \frac{0.07}{0.08}=\frac{7}{8}
\end{aligned}
$$

\therefore Empirical formula of the hydrocarbon is $\mathbf{C}_{7} \mathbf{H}_{8}$
88.

Reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acidic medium to Cr^{3+}, requires six electrons.
\therefore Eq. wt. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium $=\frac{\text { Mol. wt. }}{6}$
59.
60.

In exponential notation, only the numerical portion gives the number of significant figures. Hence, 6.023×10^{23} has four significant figures.

